题目内容

【题目】已知f(x)=﹣x2+4x,x∈[0,2],则函数的值域是

【答案】[0,4]
【解析】解:f(x)=﹣x2+4x=﹣(x﹣2)2+4;
∵x∈[0,2];
∴x=0时,f(x)取最小值0,x=2时,f(x)取最大值4;
∴f(x)的值域为[0,4].
所以答案是:[0,4].
【考点精析】解答此题的关键在于理解函数的值域的相关知识,掌握求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网