题目内容
【题目】设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值. (Ⅰ)求a、b的值;
(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.
【答案】解:(Ⅰ)f'(x)=6x2+6ax+3b, 因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.
即
解得a=﹣3,b=4.
(Ⅱ)由(Ⅰ)可知,f(x)=2x3﹣9x2+12x+8c,f'(x)=6x2﹣18x+12=6(x﹣1)(x﹣2).
当x∈(0,1)时,f'(x)>0;
当x∈(1,2)时,f'(x)<0;
当x∈(2,3)时,f'(x)>0.
所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.
则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.
因为对于任意的x∈[0,3],有f(x)<c2恒成立,
所以9+8c<c2 ,
解得c<﹣1或c>9,
因此c的取值范围为(﹣∞,﹣1)∪(9,+∞).
【解析】(1)依题意有,f'(1)=0,f'(2)=0.求解即可.(2)若对任意的x∈[0,3],都有f(x)<c2成立f(x)max<c2在区间[0,3]上成立,根据导数求出函数在[0,3]上的最大值,进一步求c的取值范围.
【考点精析】通过灵活运用函数的极值与导数和函数的最大(小)值与导数,掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值即可以解答此题.
【题目】靖国神社是日本军国主义的象征.中国人民珍爱和平,所以要坚决反对日本军国主义. 2013年12月26日日本首相安倍晋三悍然参拜靖国神社,此举在世界各国激起舆论的批评.某报的环球舆情调查中心对中国大陆七个代表性城市的1000个普通民众展开民意调查. 某城市调查体统计结果如下表:
性别 中国政府是否 需要在钓鱼岛和其他争议 问题上持续对日强硬 | 男 | 女 |
需要 | 50 | 250 |
不需要 | 100 | 150 |
(1) 试估计这七个代表性城市的普通民众中,认为 “中国政府需要在钓鱼岛和其他争议问题上持续对日强硬” 的民众所占比例;
(2) 能否有以上的把握认为这七个代表性城市的普通民众的民意与性别有关?
(3) 从被调查认为“中国政府需要在钓鱼岛和其他争议问题上持续对日强硬” 的民众中,采用分层抽样的方式抽取6人做进一步的问卷调查,然后在这6人中用简单随机抽样方法抽取2人进行电视专访,记被抽到的2人中女性的人数为,求的分布列.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |