题目内容
如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1:3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求的取值范围.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求的取值范围.
(Ⅰ); (Ⅱ)[,).
试题分析:(Ⅰ)由题意比例关系先求c,再由离心率求a,从而可求椭圆的方程;(Ⅱ)分直线AB斜率是否存在两种情况讨论:(1)当直线AB垂直于x轴时,易求;(2)当直线AB不垂直于x轴时,先设直线AB的斜率,点M、A、B的坐标,把点A、B坐标代入椭圆方程求k、m之间的关系,再求PQ直线方程,然后与椭圆方程联立方程组,由韦达定理求的表达式,最后求其范围.
试题解析:(Ⅰ) 设F2(c,0),则=,所以c=1.
因为离心率e=,所以a=.
所以椭圆C的方程为. 6分
(Ⅱ)当直线AB垂直于x轴时,直线AB方程为x=-,此时P(,0)、Q(,0)
.
当直线AB不垂直于x轴时,设直线AB的斜率为k,M(-,m) (m≠0),A(x1,y1),B(x2,y2).
由 得(x1+x2)+2(y1+y2)=0,则-1+4mk=0,故k=.
此时,直线PQ斜率为,PQ的直线方程为.即.
联立 消去y,整理得.
所以,.
于是(x1-1)(x2-1)+y1y2
.
令t=1+32m2,1<t<29,则.
又1<t<29,所以.
综上,的取值范围为[,). 15分
练习册系列答案
相关题目