题目内容
【题目】(本题满分12分)已知椭圆C: 的离心率为, 是椭圆的两个焦点, 是椭圆上任意一点,且的周长是.
(1)求椭圆C的方程;
(2)设圆T: ,过椭圆的上顶点作圆T的两条切线交椭圆于E、F两点,当圆心在轴上移动且时,求EF的斜率的取值范围.
【答案】(1);(2).
【解析】试题分析:(1)由椭圆离心率得到a,c的关系,再由△PF1F2的周长是8+2得a,c的另一关系,联立求得a,c的值,代入隐含条件求得b,则椭圆方程可求;(2)椭圆的上顶点为M(0,1),设过点M与圆T相切的直线方程为y=kx+1,由圆心到切线距离等于半径得到关于切线斜率的方程,由根与系数关系得到
,再联立一切线方程和椭圆方程,求得E的坐标,同理求得F坐标,另一两点求斜率公式得到.然后由函数单调性求得EF的斜率的范围
试题解析:(1)由,即,可知a=4b, ,
∵△PF1F2的周长是,
∴,∴a=4,b=1,所求椭圆方程为;
(2)椭圆的上顶点为M(0,1),设过点M与圆T相切的直线方程为y=kx+1,
由直线y=kx+1与T相切可知,
即(9t2﹣4)k2+18tk+5=0,
∴,
由,得.
∴, 同理,
则.
当1<t<3时, 为增函数,故EF的斜率的范围为.
练习册系列答案
相关题目
【题目】某产品的广告费用x与销售额y的统计数据如下表
广告费用x(万元) | 4 | 2 | 3 | 5 |
销售额y(万元) | 49 | 26 | 39 | 54 |
根据上表可得回归方程 = x+ 的 为9.4,据此模型预报广告费用为6万元时销售额为( )
A.63.6万元
B.65.5万元
C.67.7万元
D.72.0万元