ÌâÄ¿ÄÚÈÝ
8£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©¾¹ýµã£¨0£¬$\sqrt{3}$£©£¬ÀëÐÄÂÊΪ$\frac{1}{2}$£¬×óÓÒ½¹µã·Ö±ðΪF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¨I
¢ñ£©ÇóÍÖÔ²µÄ·½³Ì
£¨¢ò£©ÈôÖ±Ïßl£ºy=-$\frac{1}{2}$x+mÓëÍÖÔ²½»ÓÚA£¬BÁ½µã£¬ÓëÒÔ$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©ÎªÖ±¾¶µÄÔ²½»ÓÚF1£¬F2Á½µã£¬ÇÒÂú×ãD£¬ÇóÖ±ÏßDF1¡ÍF1F2µÄ·½³Ì£®
·ÖÎö £¨¢ñ£©¸ù¾ÝÍÖÔ²µÃ¶¨Ò壬ÀëÐÄÂʵö¨Ò壬¹¹Ôì·½³Ì×飬½âµÃ¼´¿É£»
£¨¢ò£©ÓÉÌâÒâ¿ÉµÃF1F2Ϊֱ¾¶µÃÔ²µÄ·½³ÌΪx2+y2=1£¬µÃµ½Ô²Ðĵ½Ö±ÏßµÄlµÄ¾àÀëΪd£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÀûÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½Çó³ö|AB|µÄ³¤£¬¼´¿ÉÇó³ömµÄÖµ£¬ÎÊÌâµÃÒÔ½â¾ö£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉµÃ$\left\{\begin{array}{l}{b=\sqrt{3}}\\{\frac{c}{a}=\frac{1}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬
½âµÃa=2£¬b=$\sqrt{3}$£¬c=1£¬
¡àÍÖÔ²µÃ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£¬
£¨¢ò£©ÓÉÌâÒâ¿ÉµÃF1F2Ϊֱ¾¶µÃÔ²µÄ·½³ÌΪx2+y2=1£¬
¡àÔ²Ðĵ½Ö±ÏßµÄlµÄ¾àÀëΪd=$\frac{2|m|}{\sqrt{5}}$£¬
ÓÉd£¼1£¬¼´$\frac{2|m|}{\sqrt{5}}$£¼1£¬¿ÉµÃ|m|£¼$\frac{\sqrt{5}}{2}$£¬
¡à|CD|=2$\sqrt{1-{d}^{2}}$=2$\sqrt{1-\frac{4{m}^{2}}{5}}$=$\frac{2}{\sqrt{5}}$$\sqrt{5-4{m}^{2}}$£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=-\frac{1}{2}x+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬
ÕûÀíµÃx2-mx+m2-3=0£¬
¡àx1+x2=m£¬x1x2=m2-3£¬
¡à|AB|=$\sqrt{1+£¨-\frac{1}{2}£©^{2}}$$\sqrt{{m}^{2}-4£¨{m}^{2}-3£©}$$\frac{\sqrt{15}}{2}\sqrt{4-{m}^{2}}$
¡ß$\frac{|AB|}{|CD|}$=$\frac{5\sqrt{3}}{4}$£¬
¡à$\frac{\sqrt{4-{m}^{2}}}{\sqrt{5-4{m}^{2}}}$=1£¬
½âµÃm=¡À$\frac{\sqrt{3}}{3}$£¬ÇÒÂú×ã|m|£¼$\frac{\sqrt{5}}{2}$£¬
¡àÖ±ÏßlµÄ·½³ÌΪy=$-\frac{1}{2}$x+$\frac{\sqrt{3}}{3}$£¬»òy=-$\frac{1}{2}$x-$\frac{\sqrt{3}}{3}$£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÃ±ê×¼·½³Ì£¬ÏÒ³¤¹«Ê½£¬µãµ½Ö±Ïß¾àÀ빫ʽ£¬¿¼²éÁËѧÉúµÃת»¯ÄÜÁ¦£¬ÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | d£¨A£¬C£©+d£¨B£¬C£©=d£¨A£¬B£© | B£® | d£¨A£¬C£©+d£¨B£¬C£©£¾d£¨A£¬B£© | C£® | d£¨A-C£¬B-C£©=d£¨A£¬B£© | D£® | d£¨A-C£¬B-C£©£¾d£¨A£¬B£© |