题目内容

如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm2,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm,怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?

广告的高为140 cm,宽为175 cm时,可使广告的面积最小

解析试题分析:解法1:设矩形栏目的高为a cm,宽为b cm,则ab=9000.          ①
广告的高为a+20,宽为2b+25,其中a>0,b>0.
广告的面积S=(a+20)(2b+25)
=2ab+40b+25a+500=18500+25a+40b
≥18500+2=18500+
当且仅当25a=40b时等号成立,此时b=,代入①式得a=120,从而b=75.
即当a=120,b=75时,S取得最小值24500.
故广告的高为140 cm,宽为175 cm时,可使广告的面积最小.
解法2:设广告的高为宽分别为x cm,y cm,则每栏的高和宽分别为x-20,其中x>20,y>25
两栏面积之和为2(x-20),由此得y=
广告的面积S=xy=x()=x,
整理得S=
因为x-20>0,所以S≥2
当且仅当时等号成立,
此时有(x-20)2=14400(x>20),解得x=140,代入y=+25,得y=175,
即当x=140,y=175时,S取得最小值24500,
故当广告的高为140 cm,宽为175 cm时,可使广告的面积最小.
考点:不等式求解最值
点评:解决的关键是利用函数的性质或者是均值不等式求解最值,关键是设好变量,表示广告的面积,属于基础题。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网