题目内容

【题目】如图,在各棱长均为4的直四棱柱底面为菱形 为棱上一点.

1求证:平面平面

2求二面角的余弦值.

【答案】1见解析;2.

【解析】试题分析:(1)由底面为菱形,可得,根据直棱柱的性质可得,由线面垂直的判定定理可得平面,从而根据面面垂直的判定定理可得平面平面;(2)设交于点 交于点,以为原点, 分别为轴,建立空间直角坐标系,分别根据向量垂直数量积为零列方程组求出平面与平面的一个法向量,根据空间向量夹角余弦公式,可得二面角的余弦值.

试题解析:1)证明:∵底面为菱形.

在直四棱柱底面 .

平面

平面,∴平面平面.

2)解:设交于点 交于点为原点 分别为建立空间直角坐标系如图所示

为平面的法向量

.

的中点连接

易证平面从而平面的一个法向量为.

∴由图可知,二面角为锐角二面角的余弦值为.

【方法点晴】本题主要考查面面垂直的证明以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网