题目内容
【题目】如图,在各棱长均为4的直四棱柱中,底面为菱形, , 为棱上一点,且.
(1)求证:平面平面;
(2)求二面角的余弦值.
【答案】(1)见解析;(2).
【解析】试题分析:(1)由底面为菱形,可得,根据直棱柱的性质可得,由线面垂直的判定定理可得平面,从而根据面面垂直的判定定理可得平面平面;(2)设与交于点, 与交于点,以为原点, 分别为轴,建立空间直角坐标系,分别根据向量垂直数量积为零列方程组求出平面与平面的一个法向量,根据空间向量夹角余弦公式,可得二面角的余弦值.
试题解析:(1)证明:∵底面为菱形,∴.
在直四棱柱中,∴底面, ∴.
∵,∴平面,
又平面,∴平面平面.
(2)解:设与交于点, 与交于点,以为原点, 分别为轴,建立空间直角坐标系,如图所示,则, , , ,
则, , ,
设为平面的法向量,
则,
取,则.
取的中点,连接,则,
易证平面,从而平面的一个法向量为.
∴,
∴由图可知,二面角为锐角,二面角的余弦值为.
【方法点晴】本题主要考查面面垂直的证明以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.
【题目】若学生一天学习数学超过两个小时的概率为(每天是相互独立没有影响的),一周内至少有四天每天学习数学超过两个小时,就说该生本周数学学习是投入的.
(Ⅰ)①设学生本周一天学习数学超过两个小时的天数为求的分布列与数学期望
②求学生本周数学学习投入的概率.
(Ⅱ)为了研究学生学习数学的投入程度和本周数学周练成绩的关系,随机在年级中抽取了名学生进行调查,所得数据如下表所示:
成绩理想 | 成绩不太理想 | 合计 | |
数学学习投入 | 20 | 10 | 30 |
数学学习不太投入 | 10 | 15 | 25 |
合计 | 30 | 25 | 55 |
根据上述数据能否有的把握认为“学生学习数学的投入程度和本周数学成绩两事件有关”?
附:
10.828 |