题目内容

【题目】某校为调查高中生选修课的选修倾向与性别关系,随机抽取50名学生,得到如表的数据表:

倾向“平面几何选讲”

倾向“坐标系与参数方程”

倾向“不等式选讲”

合计

男生

16

4

6

26

女生

4

8

12

24

合计

20

12

18

50


(1)根据表中提供的数据,选择可直观判断“选课倾向与性别有关系”的两种,作为选课倾向的变量的取值,并分析哪两种选择倾向与性别有关系的把握大;
附:K2=

P(k2≤k0

0.100

0.050

0.010

0.005

0.001

k0

2.706

3.841

6.635

7.879

10.828


(2)在抽取的50名学生中,按照分层抽样的方法,从倾向“平面几何选讲”与倾向“坐标系与参数方程”的学生中抽取8人进行问卷.若从这8人中任选3人,记倾向“平面几何选讲”的人数减去与倾向“坐标系与参数方程”的人数的差为ξ,求ξ的分布列及数学期望.

【答案】
(1)解:选倾向“坐标系与参数方程”与倾向“不等式选讲”,k=0,所以这两种选择与性别无关;

选倾向“坐标系与参数方程”与倾向“平面几何选讲”,K2= ≈6.969>6.635,

∴有99%的把握认为选倾向“坐标系与参数方程”与倾向“平面几何选讲”与性别有关;

选倾向“平面几何选讲”与倾向“不等式选讲”,K2= ≈8.464>7.879,

∴有99.5%的把握认为选倾向“平面几何选讲”与倾向“不等式选讲”与性别有关,

综上所述,选倾向“平面几何选讲”与倾向“不等式选讲”与性别有关的把握最大;


(2)解:倾向“平面几何选讲”与倾向“坐标系与参数方程”的学生人数的比例为20:12=5:3,从中抽取8人进行问卷,人数分别为5,3,

由题意,ξ=﹣3,﹣1,1,3,则

P(ξ=﹣3)= = ,P(ξ=﹣1)= = ,P(ξ=1)= = ,P(ξ=1)= =

ξ的分布列

ξ

﹣3

﹣1

1

3

P

数学期望Eξ=(﹣3)× +(﹣1)× +1× +3× =


【解析】(1)利用K2= ,求出K2 , 与临界值比较,即可得出结论;(2)倾向“平面几何选讲”与倾向“坐标系与参数方程”的学生人数的比例为20:12=5:3,从中抽取8人进行问卷,人数分别为5,3,由题意,ξ=﹣3,﹣1,1,3,求出相应的概率,即可求ξ的分布列及数学期望.

练习册系列答案
相关题目

【题目】新能源汽车的春天来了!2018年3月5日上午,李克强总理做政府工作报告时表示,将新能源汽车车辆购置税优惠政策再延长三年,自2018年1月1日至2020年12月31日,对购置的新能源汽车免征车辆购置税.某人计划于2018年5月购买一辆某品牌新能源汽车,他从当地该品牌销售网站了解到近五个月实际销量如下表:

月份

2017.12

2018.01

2018.02

2018.03

2018.04

月份编号t

1

2

3

4

5

销量(万辆)

0.5

0.6

1

1.4

1.7

(1)经分析,可用线性回归模型拟合当地该品牌新能源汽车实际销量(万辆)与月份编号之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测2018年5月份当地该品牌新能源汽车的销量;

(2)2018年6月12日,中央财政和地方财政将根据新能源汽车的最大续航里程(新能源汽车的最大续航里程是指理论上新能源汽车所装的燃料或电池所能够提供给车跑的最远里程)对购车补贴进行新一轮调整.已知某地拟购买新能源汽车的消费群体十分庞大,某调研机构对其中的200名消费者的购车补贴金额的心理预期值进行了一个抽样调查,得到如下一份频数表:

补贴金额预期值区间(万元)

20

60

60

30

20

10

将频率视为概率,现用随机抽样方法从该地区拟购买新能源汽车的所有消费者中随机抽取3人,记被抽取3人中对补贴金额的心理预期值不低于3万元的人数为,求的分布列及数学期望.

参考公式及数据:①回归方程,其中,②,.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网