题目内容

已知函数f(x)=cosx(x∈(0,2π))有两个不同的零点x1,x2,且方程f(x)=m有两个不同的实根x3,x4,若把这个数按从小到大排列构成等差数列,则实数m的值为________.

-
分析:函数f(x)=cosx(x∈(0,2π))有两个不同的零点x1,x2,可知x1=,x2=π,因为方程f(x)=m有两个不同的实根x3,x4,若把这个数按从小到大排列构成等差数列,需要分两种情况进行讨论:m>0和m<0,再利用等差数列的性质进行求解;
解答:函数f(x)=cosx(x∈(0,2π))有两个不同的零点x1,x2
∴x1=,x2=π,∵方程f(x)=m有两个不同的实根x3,x4,若把这个数按从小到大排列构成等差数列,
若m>0则,x3π,x4,构成等差数列,可得公差d=-=π,则x1=-π=-<0,显然不可能;
若m<0则,,x3,x4π,构成等差数列,可得公差3d=-,解得d=,∴x3=+,m=cosx3==-
故答案为:-
点评:此题主要考查三角函数的性质及三角函数值的求解问题,涉及函数的零点构成等差数列,解题过程中用到了分类讨论的思想,是一道基础题;
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网