题目内容

【题目】设幂函数f(x)=(a﹣1)xk(a∈R,k∈Q)的图象过点
(1)求k,a的值;
(2)若函数h(x)=﹣f(x)+2b +1﹣b在[0,2]上的最大值为3,求实数b的值.

【答案】
(1)解:设幂函数f(x)=(a﹣1)xk(a∈R,k∈Q)的图象过点

则a﹣1=1,即a=2,此时f(x)=xk

=2,即 =2,解得k=4


(2)解:∵a=2,k=4,

∴f(x)=x4

则h(x)=﹣f(x)+2b +1﹣b=﹣x4+2bx2+1﹣b

=﹣(x2﹣b)2+1﹣b+b2

设t=x2,则0≤t≤4,

则函数等价为g(t)=﹣(t﹣b)2+1﹣b+b2

若b≤0,则函数g(t)在[0,4]上单调递减,最大值为g(0)=1﹣b=3,即b=﹣2,满足条件.

若0<b≤4,此时当t=b时,最大值为g(b)=1﹣b+b2=3,

即b2﹣b﹣2=0,解得b=2或b=﹣1(舍).

若b>4,则函数g(t)在[0,4]上单调递增,最大值为g(4)=3b﹣15=3,即3b=18,b=6,满足条件

综上b=﹣2或b=2或b=6


【解析】(1)根据幂函数的定义和性质进行求解即可求k,a的值;(2)若函数h(x)=﹣f(x)+2b +1﹣b在[0,2]上的最大值为3,利用换元法转化一元二次函数,利用一元二次函数的性质即可求实数b的值.
【考点精析】利用二次函数的性质对题目进行判断即可得到答案,需要熟知当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网