题目内容
【题目】已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点(都在轴上方),且.
(1)求椭圆的方程;
(2)当为椭圆与轴正半轴的交点时,求直线方程;
(3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.
【答案】(1) (2) (3)直线总经过定点
【解析】试题分析:(1) 设,用坐标表示条件列出方程化简整理可得椭圆的标准方程;(2)由(1)可知, ,即可得,由得,写出直线的方程与椭圆方程联立,求出点的坐标,由两点式求直线的方程即可;(3)由,得,设直线方程为,与椭圆方程联立得,由根与系数关系计算得,从而得到直线方程为,从而得到直线过定点.
试题解析: (1)设,则, ,………………1分
∴,化简,得,∴椭圆的方程为.………………3分
(2), ,∴,………………4分
又∵,∴, .
代入解,得(舍)∴,………………6分
,∴.即直线方程为.………………7分
(3)∵,∴.
设,,直线方程为.代直线方程入,得
.………………9分
∴,,∴=
,
∴,……………11分
∴直线方程为,
∴直线总经过定点.………………12分
【题目】《中国好声音()》是由浙江卫视联合星空传媒旗下灿星制作强力打造的大型励志专业音乐评论节目,于2012年7月13日在浙江卫视播出.每期节目有四位导师参加.导师背对歌手,当每位参赛选手演唱完之前有导师为其转身,则该选手可以选择加入为其转身的导师的团队中接受指导训练.已知某期《中国好声音》中,6位选手唱完后,四位导师为其转身的情况如下表所示:
导师转身人数(人) | 4 | 3 | 2 | 1 |
获得相应导师转身的选手人数(人) | 1 | 2 | 2 | 1 |
现从这6位选手中随机抽取两人考查他们演唱完后导师的转身情况.
(1)请列出所有的基本事件;
(2)求两人中恰好其中一位为其转身的导师不少于3人,而另一人为其转身的导师不多于2人的概率.
【题目】某校为了解高一实验班的数学成绩,采用抽样调查的方式,获取了位学生在第一学期末的数学成绩数据,样本统计结果如下表:
分组 | 频数 | 频率 |
合计 |
(1)求的值和实验班数学平均分的估计值;
(2)如果用分层抽样的方法从数学成绩小于分的学生中抽取名学生,再从这名学生中选人,求至少有一个学生的数学成绩是在的概率.