题目内容
【题目】已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=.
(1)求直线CD的方程;
(2)求圆P的方程.
【答案】(1)x+y-3=0(2)圆P的方程为(x+3)2+(y-6)2=40或(x-5)2+(y+2)2=40
【解析】
(1)求出AB中点坐标和直线CD的斜率,即得直线CD的方程;(2)设圆心P(a,b),求出的值,即得圆P的方程.
(1)由题意知,直线AB的斜率k=1,中点坐标为(1,2).
所以.
则直线CD的方程为y-2=-(x-1),
所以直线CD的方程为x+y-3=0.
(2)设圆心P(a,b),则由点P在CD上得a+b-3=0.①
又因为直径|CD|=4,所以|PA|=2,
所以(a+1)2+b2=40.②
由①②解得或
所以圆心P(-3,6)或P(5,-2).
所以圆P的方程为(x+3)2+(y-6)2=40或(x-5)2+(y+2)2=40.
练习册系列答案
相关题目