题目内容
【题目】已知函数.
当时,恒成立,求的值;
若恒成立,求的最小值.
【答案】(1);(2).
【解析】
(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间,求出函数的最大值,从而求出a的值即可;
(2)把f(x)≤0恒成立,转化为lnx≤ax+b恒成立,当a≤0时显然不满足题意;当a>0时,要使lnx≤ax+b对任意x>0恒成立,需要直线y=ax+b与曲线y=lnx相切,设出切点坐标,把a,b用切点横坐标表示,得到a+blnx0﹣1(x0>0),构造函数g(x)lnx﹣1,利用导数求其最小值得答案.
解:(1)由,得,则.
∴.
若,则,在上递增.
又,∴.当时,不符合题意.
② 若,则当时,,递增;当时,,递减.
∴当时,.
欲使恒成立,则需
记,则.
∴当时,,递减;当时,,递增.
∴当时,
综上所述,满足题意的.
(2)由(1)知,欲使恒成立,则.
而恒成立恒成立函数的图象不在函数图象的上方,
又需使得的值最小,则需使直线与曲线的图象相切.
设切点为,则切线方程为,即..
∴ .
令,则.
∴当时,,递减;当时,,递增.
∴.
故的最小值为0.
【题目】为了研究“教学方式”对教学质量的影响,某高中老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.
甲班 | 乙班 | 合计 | |
优秀 | |||
不优秀 | |||
合计 |
现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学至少有一名被抽中的概率;
(II)学校规定:成绩不低于75分的为优秀.请填写下面的2×2列联表,并判断有多大把握认为“成绩优秀与教学方式有关”.
下面临界值表供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | .024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2=)
【题目】现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.
月收入(单位百元) | ||||||
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 8 | 12 | 5 | 2 | 1 |
(1)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“月收入以5500元为分界点对“楼市限购令”的态度有差异;
月收入不低于55百元的人数 | 月收入低于55百元的人数 | 合计 | |
赞成 | a=______________ | c=______________ | ______________ |
不赞成 | b=______________ | d=______________ | ______________ |
合计 | ______________ | ______________ | ______________ |
(2)试求从年收入位于(单位:百元)的区间段的被调查者中随机抽取2人,恰有1位是赞成者的概率。
参考公式:,其中.
参考值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】学生学习的自律性很重要.某学校对自律性与学生成绩是否有关进行了调研,从该校学生中随机抽取了100名学生,通过调查统计得到列联表的部分数据如下表:
自律性一般 | 自律性强 | 合计 | |
成绩优秀 | 40 | ||
成绩一般 | 20 | ||
合计 | 50 | 100 |
(1)补全列联表中的数据;
(2)判断是否有的把握认为学生的自律性与学生成绩有关.
参考公式及数据:.
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |