题目内容
已知函数f(x)=x3+ax2+bx.
(1)若函数y=f(x)在x=2处有极值-6,求y=f(x)的单调递减区间;
(2)若y=f(x)的导数f′(x)对x∈[-1,1]都有f′(x)≤2,求
的取值范围.
(1)若函数y=f(x)在x=2处有极值-6,求y=f(x)的单调递减区间;
(2)若y=f(x)的导数f′(x)对x∈[-1,1]都有f′(x)≤2,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050539590455.png)
(1)
(2)(-∞,-2)∪[1,+∞)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050539605698.png)
(1)f′(x)=3x2+2ax+b,
依题意有
,即![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240505396521107.png)
解得
,∴f′(x)=3x2-5x-2.
由f′(x)<0,得-
<x<2.
∴y=f(x)的单调递减区间是
.
(2)由
,得![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050539730945.png)
不等式组确定的平面区域如图阴影部分所示:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240505398082730.jpg)
由
,得![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050539839640.png)
∴Q点的坐标为(0,-1).
设z=
,则z表示平面区域内的点(a,b)与点
P(1,0)连线的斜率.
∵kPQ=1,由图可知z≥1或z<-2,
即
∈(-∞,-2)∪[1,+∞).
依题意有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240505396361043.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240505396521107.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050539668789.png)
由f′(x)<0,得-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050539683327.png)
∴y=f(x)的单调递减区间是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050539605698.png)
(2)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240505397141375.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050539730945.png)
不等式组确定的平面区域如图阴影部分所示:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240505398082730.jpg)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050539824879.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050539839640.png)
∴Q点的坐标为(0,-1).
设z=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050539590455.png)
P(1,0)连线的斜率.
∵kPQ=1,由图可知z≥1或z<-2,
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050539590455.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目