题目内容

【题目】已知函数f(x)= (k>0).
(1)若f(x)>m的解集为{x|x<﹣3或x>﹣2},求不等式5mx2+ x+3>0的解集;
(2)若存在x>3使得f(x)>1成立,求k的取值范围.

【答案】
(1)解:∵函数f(x)= (k>0),f(x)>m的解集为{x|x<﹣3或x>﹣2},

∴f(﹣3)=m,f(﹣2)=m,即 =m,且 =m,求得k=2,m=﹣

故不等式5mx2+ x+3>0,即 不等式﹣2x2+x+3>0,即 2x2﹣x﹣3<0,求得﹣1<x<

故不等式的解集为{x|﹣1<x< }


(2)解:∵存在x>3使得f(x)>1成立,∴ >1在(3,+∞)上有解,

即x2﹣kx+3k<0在(3,+∞)上有解,k> 在(3,+∞)上能成立,

故k大于g(x)= 的最小值.

∵g′(x)= ,∴在(3,6)上,g′(x)<0,g(x)为减函数;

在(6,+∞)上,g′(x)>0,g(x)为增函数,故g(x)的最小值为g(6)=12,∴k>12.


【解析】(1)根据f(x)>m的解集为{x|x<﹣3或x>﹣2},可得 f(﹣3)=m,f(﹣2)=m,求得m、k的值,从而求得不等式5mx2+ x+3>0的解集.(2)由题意可得k> 在(3,+∞)上能成立,故k大于g(x)= 的最小值.再利用导数求得g(x)的最小值,可得k的取值范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网