题目内容
【题目】在平面直角坐标系中,直线l:yx﹣3经过椭圆1(a>b>0)的一个焦点,且点(0,b)到直线l的距离为2.
(1)求椭圆E的方程;
(2)A、B、C是椭圆E上的三个动点,A与B关于原点对称,且|CA|=|CB|,求△ABC面积的最小值,并求此时点C的坐标.
【答案】(1)(2),
【解析】
(1)利用点到直线的距离公式可求出椭圆的方程;
(2)联立过直线与椭圆方程,利用弦长公式可求出,由对称性可知,,可得到面积与直线斜率的关系,即可得出答案.
(1)由题可知,,即 ①
又点到直线的距离为,
则有,
解得 ②
由①②得,
故椭圆的方程为:
(2)由题可设过,,,两点的直线方程为:,
解方程组,
可得
则有,
如图,
延长交椭圆于点,同理可得,.
,
.
由图形对称性可知,.
令.则有,当且仅当,即时,等号成立.
故面积的最小值为,此时,点的坐标为.
练习册系列答案
相关题目