题目内容

1.在△ABC中,内角A,B,C的对边分别为a,b,c,且(b+c)2-a2=tan75°bc
(Ⅰ)求cosA的值;
(Ⅱ)若a=2,求$\overrightarrow{BA}$•$\overrightarrow{BC}$的取值范围;
(Ⅲ)若b=2,求$\overrightarrow{BA}$•$\overrightarrow{BC}$的取值范围.

分析 (Ⅰ)由已知得到tan75°,得到a2=b2+c2-$\sqrt{3}$bc,利用余弦定理解得;
(Ⅱ)由a=2,A=30°,得△ABC外接圆直径2R=4,且点A在优弧上任意运动.设有向线段BD长为x,则$\overrightarrow{BA}$•$\overrightarrow{BC}$=2x,由x范围求得;
(Ⅲ)设线段AC中点为D,由图可知|BD|∈[$\frac{1}{2}$,+∞).而$\overrightarrow{BA}$•$\overrightarrow{BC}$用BD表示得到所求.

解答 解:(Ⅰ)因为:tan75°=tan(45°+30°)=$\frac{1+\frac{\sqrt{3}}{3}}{1-\frac{\sqrt{3}}{3}}=2+\sqrt{3}$,
所以:(b+c)2-a2=tan75°bc,展开后得:a2=b2+c2-$\sqrt{3}$bc
故cosA=$\frac{\sqrt{3}}{2}$,即A=30°…(4分)
(II)由a=2,A=30°,得△ABC外接圆直径2R=4,且点A在优弧上任意运动.
由图:AD⊥BC于点D,设有向线段BD长为x,则$\overrightarrow{BA}$•$\overrightarrow{BC}$=2x,
由图可知:x∈[-1,3],故$\overrightarrow{BA}$•$\overrightarrow{BC}$∈[-2,6]…(8分)
(III)设线段AC中点为D,AC=2,由图可知|BD|∈[$\sqrt{3}$,+∞).
由:$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{1}{4}$[($\overrightarrow{BA}$+$\overrightarrow{BC}$)2-($\overrightarrow{BA}$-$\overrightarrow{BC}$)2]=|BD|2-1,
所以:$\overrightarrow{BA}$•$\overrightarrow{BC}$∈[2,+∞).…(12分)

点评 本题考查了余弦定理的运用、向量的数量积范围等知识,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网