题目内容

2.已知f(x)为奇函数,当x≥0时,f(x)=2x+t,f(m)<3,则m取值范围是m<2.

分析 根据奇函数的结论:f(0)=0求出t,设x<0则-x>0,利用奇函数的性质求出函数f(x)的解析式,利用分类讨论求出f(m)<3时,m的取值范围.

解答 解:∵f(x)是定义在R上的奇函数,当x≥0时f(x)=2x+t(t为常数),
∴f(0)=20+t=0,解得t=-1,
则当x≥0时,f(x)=2x-1,
设x<0,则-x>0,
∴f(x)=-f(-x)=-(2-x-1)=-2-x+1,
又f(m)<3,
∴$\left\{\begin{array}{l}{m≥0}\\{{2}^{m}-1<3}\end{array}\right.$或$\left\{\begin{array}{l}{m<0}\\{-{2}^{-m}+1<3}\end{array}\right.$,
∴m<2.
故答案为:m<2.

点评 本题考查利用函数的奇偶性求函数的解析式,充要条件的判断,以及分类讨论求不等式的解集,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网