题目内容
【题目】已知椭圆的中心在坐标原点,焦点在轴上且过点,离心率是.
(1)求椭圆的标准方程;
(2)直线过点且与椭圆交于两点,若,求直线的方程.
【答案】(1)+y2=1(2)x+6y+=0和x-6y+=0.
【解析】试题分析:(1)由题设条件知关于a,b,c的方程组,由此能求出椭圆方程.
(2)可以设直线方程(斜率不存在单独考虑),然后与椭圆方程联立,消去y得到关于x的一元二次方程,利用韦达定理结合题目条件建立方程即可求出直线方程.
试题解析:(1)设椭圆的方程为.
由已知可得3分
解得, .
故椭圆的方程为. 6分
(2)由已知,若直线的斜率不存在,则过点的直线的方程为,
此时,显然不成立. 7分
若直线的斜率存在,则设直线的方程为.
则
整理得. 9分
由
.
设.
故,①. ② 10分
因为,即.③
①②③联立解得. 13分
所以直线的方程为和. 14分
练习册系列答案
相关题目
【题目】为了研究“教学方式”对教学质量的影响,某高中老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).如图茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.
(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学至少有一名被抽中的概率;
(2)学校规定:成绩不低于75分的为优秀,请填写列联表,并判断有多大把握认为“成绩优秀与教学方式有关”.
甲班 | 乙班 | 合计 | |
优秀 | |||
不优秀 | |||
合计 |
参考公式与临界值表: .
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |