题目内容

【题目】在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,其中AD∥BC,AB⊥AD,AB=AD= BC, =
(1)求证:DE⊥平面PAC;
(2)若直线PE与平面PAC所成角的正弦值为 ,求二面角A﹣PC﹣D的平面角的余弦值.

【答案】
(1)证明:以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,

设AB=AD= BC=2,

则D(0,2,0),E(2,1,0),A(0,0,0),C(2,4,0),

=(2,﹣1,0), =(2,4,0),

=4﹣4+0=0,∴DE⊥AC,

∵PA⊥平面ABCD,DE平面ABCD,∴DE⊥PA,

∵PA∩AC=A,∴DE⊥平面PAC


(2)解:设P(0,0,t),(t>0), =(0,0,t), =(2,4,0), =(2,1,﹣t),

设平面PAC的法向量 =(x,y,z),

,取x=2,得 =(2,﹣1,0),

∵直线PE与平面PAC所成角的正弦值为

= = ,解得t=1,或t=﹣1(舍),

∴P(0,0,1), =(2,4,﹣1), =(0,2,﹣1),

设平面PCD的法向量 =(a,b,c),

,取b=1,得 =(﹣1,1,2),

设二面角A﹣PC﹣D的平面角为θ,

则cosθ= = =

二面角A﹣PC﹣D的平面角的余弦值为


【解析】(1)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能证明DE⊥平面PAC.(2)求出平面PAC的法向量和平面PCD的法向量,利用向量法能求出二面角A﹣PC﹣D的平面角的余弦值.
【考点精析】认真审题,首先需要了解直线与平面垂直的判定(一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网