题目内容
【题目】下列命题中错误的是
A. 若命题为真命题, 命题为假命题, 则命题“”为真命题
B. 命题“若,则或”为真命题
C. 对于命题,,则,
D. “”是“”的充分不必要条件个
【答案】D
【解析】
由复合命题的真值表即可判断A;由原命题的逆否命题的真假,可判断B;
由全称命题的否定为特称命题,可判断C;由二次方程的解法,结合充分必要条件的定义可判断D.
若命题p为真命题,命题q为假命题,则¬q为真命题,
命题“p∨(¬q)”为真命题,故A正确;
命题“若x+y≠5,则x≠2或y≠3”的逆否命题为“若x=2且y=3,则x+y=5”为真命题,
可得原命题为真命题,故B正确;
命题p:x∈R,x2+x+1>0,则¬p:x0∈R,x02+x0+1≤0,故C正确;
“x=1”可推得“x2﹣3x+2=0”,反之不成立,
“x2﹣3x+2=0”是“x=1”的必要不充分条件,故D错误.
故选:D.
【题目】某互联网公司为了确定下一季度的前期广告投入计划,收集了近个月广告投入量(单位:万元)和收益(单位:万元)的数据如下表:
月份 | ||||||
广告投入量 | ||||||
收益 |
他们分别用两种模型①,②分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值:
(Ⅰ)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?并说明理由;
(Ⅱ)残差绝对值大于的数据被认为是异常数据,需要剔除:
(ⅰ)剔除异常数据后求出(Ⅰ)中所选模型的回归方程
(ⅱ)若广告投入量时,该模型收益的预报值是多少?
附:对于一组数据,,……,,其回归直线的斜率和截距的最小二乘估计分别为:
,.
【题目】已知高中学生的数学成绩与物理成绩具有线性相关关系,在一次考试中某班7名学生的数学成绩与物理成绩如下表:
数学成绩 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理成绩 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
(1)求这7名学生的数学成绩的极差和物理成绩的平均数;
(2)求物理成绩对数学成绩的线性回归方程;若某位学生的数学成绩为110分,试预测他的物理成绩是多少?
下列公式与数据可供参考:
用最小二乘法求线性回归方程的系数公式:,;
,,
.
【题目】某种新产品投放市场一段时间后,经过调研获得了时间(天数)与销售单价(元)的一组数据,且做了一定的数据处理(如表),并作出了散点图(如图).
1.63 | 37.8 | 0.89 | 5.15 | 0.92 | 18.40 |
表中.
(1)根据散点图判断,与哪一个更适合作价格关于时间的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立关于的回归方程.
(3)若该产品的日销售量(件)与时间的函数关系为,求该产品投放市场第几天的销售额最高?最高为多少元?
附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.