题目内容
18.在△ABC中,a、b、c分别为内角∠A、∠B、∠C的对边,已知a+c=4$\sqrt{3}$,则△ABC面积的最大值为6.分析 由条件可得△ABC的面积S=$\frac{1}{2}$ac•sinB 再利用正弦函数的值域、基本不等式求得S的最大值.
解答 解:在△ABC中,∵a+c=4$\sqrt{3}$,
∴△ABC的面积S=$\frac{1}{2}$ac•sinB≤$\frac{1}{2}$•($\frac{a+c}{2}$)2=$\frac{1}{2}$×$\frac{48}{4}$=6,
当且仅当a=c=2$\sqrt{3}$,且 B=90°时,取等号,
故△ABC面积的最大值是 6,
故答案为:6.
点评 本题主要考查三角形的面积,正弦函数的值域、基本不等式的应用,属于基础题.
练习册系列答案
相关题目
8.市积极倡导学生参与绿色环保活动,其中代号为“环保卫士--12369”的绿色环保活动小组对2014年1月-2014年12月(一月)内空气质量指数API进行监测,如表是在这一年随机抽取的100天的统计结果:
(Ⅰ)若市某企业每天由空气污染造成的经济损失P(单位:元)与空气质量指数API(记为t)的关系为:$P=\left\{\begin{array}{l}0,0≤t≤100\\ 4t-400,100<t≤300\\ 1500,t>300\end{array}\right.$,在这一年内随机抽取一天,估计该天经济损失P∈(200,600]元的概率;
(Ⅱ)若本次抽取的样本数据有30天是在供暖季节,其中有8天为重度污染,完成2×2列联表,并判断是否有95%的把握认为A市本年度空气重度污染与供暖有关?
下面临界值表功参考.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
指数API | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] | >300 |
空气质量 | 优 | 良 | 轻微污染 | 轻度污染 | 中度污染 | 中重度污染 | 重度污染 |
天数 | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
(Ⅱ)若本次抽取的样本数据有30天是在供暖季节,其中有8天为重度污染,完成2×2列联表,并判断是否有95%的把握认为A市本年度空气重度污染与供暖有关?
非重度污染 | 重度污染 | 合计 | |
供暖季 | 22 | 8 | 30 |
非供暖季 | 63 | 7 | 70 |
合计 | 85 | 15 | 100 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
9.已知变量x,y满足条件$\left\{\begin{array}{l}x-y≤0\\ 3x-y-2≥0\\ x+y-6≥0\end{array}\right.$,则目标函数z=2x+y( )
A. | 有最小值3,最大值9 | B. | 有最小值9,无最大值 | ||
C. | 有最小值8,无最大值 | D. | 有最小值3,最大值8 |
6.已知复数z=-2+ai(a∈R,i是虚数单位)在复平面内对应的点在第二象限,且z•$\overline{z}$=6,则a=( )
A. | $\sqrt{2}$ | B. | -$\sqrt{2}$ | C. | 2 | D. | -2 |