题目内容

8.市积极倡导学生参与绿色环保活动,其中代号为“环保卫士--12369”的绿色环保活动小组对2014年1月-2014年12月(一月)内空气质量指数API进行监测,如表是在这一年随机抽取的100天的统计结果:
指数API[0,50](50,100](100,150](150,200](200,250](250,300]>300
空气质量轻微污染轻度污染中度污染中重度污染重度污染
天数413183091115
(Ⅰ)若市某企业每天由空气污染造成的经济损失P(单位:元)与空气质量指数API(记为t)的关系为:$P=\left\{\begin{array}{l}0,0≤t≤100\\ 4t-400,100<t≤300\\ 1500,t>300\end{array}\right.$,在这一年内随机抽取一天,估计该天经济损失P∈(200,600]元的概率;
(Ⅱ)若本次抽取的样本数据有30天是在供暖季节,其中有8天为重度污染,完成2×2列联表,并判断是否有95%的把握认为A市本年度空气重度污染与供暖有关?
非重度污染重度污染合计
供暖季22830
非供暖季63770
合计8515100
下面临界值表功参考.
P(K2≥k)0.150.100.050.0100.0050.001
k2.0722.7063.8416.6357.87910.828
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

分析 (Ⅰ)由200<4t-400≤600,得150<t≤250,频数为39,即可求出概率;
(Ⅱ)根据所给的数据,列出列联表,根据所给的观测值的公式,代入数据做出观测值,同临界值进行比较,即可得出结论.

解答 解:(Ⅰ)设“在本年内随机抽取一天,该天经济损失P∈(200,600]元”为事件A…(1分)
由200<4t-400≤600,得150<t≤250,频数为39,…(3分)
∴P(A)=$\frac{39}{100}$….(4分)
(Ⅱ)根据以上数据得到如表:

非重度污染重度污染合计
供暖季22830
非供暖季63770
合计8515100
….(8分)
K2的观测值K2=$\frac{100×(63×8-22×7)^{2}}{85×15×30×70}$≈4.575>3.841…(10分)
所以有95%的把握认为A市本年度空气重度污染与供暖有关.…(12分)

点评 本题考查概率知识,考查列联表,观测值的求法,是一个独立性检验,我们可以利用临界值的大小来决定是否拒绝原来的统计假设,若值较大就拒绝假设,即拒绝两个事件无关.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网