题目内容
在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y-1)2=4 和圆C2:(x-4)2+(y-5)2=4
(1)若直线l过点A(4,0),且被圆C1截得的弦长为2
,求直线l的方程
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.
(1)若直线l过点A(4,0),且被圆C1截得的弦长为2
3 |
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.
分析:(1)因为直线l过点A(4,0),故可以设出直线l的点斜式方程,又由直线被圆C1截得的弦长为2
,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,即圆心到直线的距离,得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l的方程.
(2)与(1)相同,我们可以设出过P点的直线l1与l2的点斜式方程,由于两直线斜率为1,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,故我们可以得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l1与l2的方程.
3 |
(2)与(1)相同,我们可以设出过P点的直线l1与l2的点斜式方程,由于两直线斜率为1,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,故我们可以得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l1与l2的方程.
解答:解:(1)由于直线x=4与圆C1不相交;
∴直线l的斜率存在,设l方程为:y=k(x-4)(1分)
圆C1的圆心到直线l的距离为d,∵l被⊙C1截得的弦长为2
∴d=
=1(12分)
d=
从而k(24k+7)=0即k=0或k=-
∴直线l的方程为:y=0或7x+24y-28=0(5分)
(2)设点P(a,b)满足条件,
由题意分析可得直线l1、l2的斜率均存在且不为0,
不妨设直线l1的方程为y-b=k(x-a),k≠0
则直线l2方程为:y-b=-
(x-a)(6分)
∵⊙C1和⊙C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,
∴⊙C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等
即
=
(8分)
整理得|1+3k+ak-b|=|5k+4-a-bk|
∴1+3k+ak-b=±(5k+4-a-bk)即(a+b-2)k=b-a+3或(a-b+8)k=a+b-5
因k的取值有无穷多个,所以
或
(10分)
解得
或
这样的点只可能是点P1(
,-
)或点P2(-
,
)
经检验点P1和P2满足题目条件(12分)
∴直线l的斜率存在,设l方程为:y=k(x-4)(1分)
圆C1的圆心到直线l的距离为d,∵l被⊙C1截得的弦长为2
3 |
∴d=
22-(
|
d=
|1-k(-3-4)| | ||
|
7 |
24 |
∴直线l的方程为:y=0或7x+24y-28=0(5分)
(2)设点P(a,b)满足条件,
由题意分析可得直线l1、l2的斜率均存在且不为0,
不妨设直线l1的方程为y-b=k(x-a),k≠0
则直线l2方程为:y-b=-
1 |
k |
∵⊙C1和⊙C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,
∴⊙C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等
即
|1-k(-3-a)-b| | ||
|
|5+
| ||||
|
整理得|1+3k+ak-b|=|5k+4-a-bk|
∴1+3k+ak-b=±(5k+4-a-bk)即(a+b-2)k=b-a+3或(a-b+8)k=a+b-5
因k的取值有无穷多个,所以
|
|
解得
|
|
这样的点只可能是点P1(
5 |
2 |
1 |
2 |
3 |
2 |
13 |
2 |
经检验点P1和P2满足题目条件(12分)
点评:在解决与圆相关的弦长问题时,我们有三种方法:一是直接求出直线与圆的交点坐标,再利用两点间的距离公式得出;二是不求交点坐标,用一元二次方程根与系数的关系得出,即设直线的斜率为k,直线与圆联立消去y后得到一个关于x的一元二次方程再利用弦长公式求解,三是利用圆中半弦长、弦心距及半径构成的直角三角形来求.对于圆中的弦长问题,一般利用第三种方法比较简捷.本题所用方法就是第三种方法.
练习册系列答案
相关题目