题目内容

已知椭圆E的离心率为e,两焦点为F1、F2,抛物线C以F1为顶点,F2为焦点,P为两曲线的一个交点,若
|PF1|
|PF2|
=e,则e的值为______.
作PT垂直椭圆准线l于T
则由椭圆第二定义
|PF1|:|PT|=e
又|PF1|:|PF2|=e
故|PT|=|PF2|
由抛物线定义知l为抛物线准线
故F1到l的距离等于F1到F2的距离,
即(-c)-(-
a2
c
)=c-(-c)
得e=
c
a
=
3
3

故答案为:
3
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网