题目内容

精英家教网已知椭圆E的离心率为e,两焦点为F1,F2,抛物线C以F1为顶点,F2为焦点,P为两曲线的一个公共点,若
|PF1|
|PF2|
=e,则e的值为(  )
A、
3
3
B、
3
2
C、
2
2
D、
6
3
分析:抛物线的准线l交x轴于M,P在l上的射影为Q,进而可推断出|F1M|=|F1F2|,则l的方程可知推知|PF2|=|PQ|,,利用
|PF1|
|PF2|
=e推断出
|PF1|
|PQ|
=e进而根据椭圆的第二定义可知l为椭圆的左准线,进而推断出-3c=-
a2
c
求得椭圆的离心率.
解答:解:记抛物线的准线l交x轴于M,P在l上的射影为Q,则|F1M|=|F1F2|=2c,
即l的方程为x=-3c,|PF2|=|PQ|,又
|PF1|
|PF2|
=e,即
|PF1|
|PQ|
=e,
∵F1是椭圆的左焦点,
∴|PQ|为P到椭圆左准线的距离,即l为椭圆的左准线,
于是有:-3c=-
a2
c
?e=
3
3

故选A
点评:本题主要考查了抛物线的简单性质,椭圆的简单性质.抛物线的定义等.考查了学生对圆锥曲线基础知识掌握的熟练程度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网