题目内容

过抛物线焦点F的直线与抛物线交于A、B两点,若A、B在抛物线的准线上的射影为A1、B1,则∠A1FB1=


  1. A.
    30°
  2. B.
    45°
  3. C.
    60°
  4. D.
    90°
D
分析:由抛物线的定义及内错角相等,可得∠AFA1=∠A1FK,同理可证∠BFB1=∠B1FK,由∠AFA1+∠A1FK+∠BFB1+∠B1FK=180°,可得答案.
解答:解:如图:设准线与x轴的交点为K,∵A、B在抛物线的准线上的射影为A1、B1
由抛物线的定义可得,AA1=AF,∴∠AA1F=∠AFA1,又由内错角相等得∠AA1F=∠A1FK,∴∠AFA1=∠A1FK.
同理可证∠BFB1=∠B1 FK. 由∠AFA1+∠A1FK+∠BFB1+∠B1FK=180°,
∴∠A1FK+∠B1FK=∠A1FB1=90°,
故选D.
点评:本题考查抛物线的定义、以及简单性质的应用,推出∠AFA1=∠A1FK 是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网