题目内容

【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们]对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在1565岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:

年龄

支持“延迟退休”的人数

15

5

15

28

17

(1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;

45岁以下

45岁以上

总计

支持

不支持

总计

(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人

①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.

②记抽到45岁以上的人数为,求随机变量的分布列及数学期望.

参考数据:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

,其中

【答案】(1)能(2)①②见解析

【解析】分析:(1)由统计数据填写列联表,计算观测值,对照临界值得出结论;
(2)①求抽到1人是45岁以下的概率,再求抽到1人是45岁以上的概率,
②根据题意知的可能取值,计算对应的概率值,写出随机变量的分布列,计算数学期望值.

详解:(1)由频率分布直方图知45岁以下与45岁以上各50人,故填充列联表如下:

45岁以下

45岁以上

总计

支持

35

45

80

不支持

15

5

20

总计

50

50

100

因为的观测值

所以在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异.

(2)①抽到1人是45岁以下的概率为,抽到1人是45岁以下且另一人是45岁以上的概率为,故所求概率.

②从不支持“延迟退休”的人中抽取8人,则45岁以下的应抽6人,45岁以上的应抽2人.所以的可能取值为0,1,2.

.

故随机变量的分布列为:

0

1

2

所以.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网