题目内容
已知数列的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列前项和为,且满足
(1)求数列的通项公式;
(2)求数列前项和;
(3)在数列中,是否存在连续的三项,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数的值;若不存在,说明理由.
(1);(2);(3)在数列中,仅存在连续的三项,按原来的顺序成等差数列,此时正整数的值为1.
解析试题分析:(1)显然要分奇偶求解,用等差数列的通项公式和等比数列的通项公式即可求解;(2)同(1)要按奇偶分别求和,即求的也就是分奇偶后的前n项和;(3)先假设存在这样的连续三项按原来的顺序成等差数列,即假设 ,则,然后代入通项公式得,显然不成立;再假设,则,然后代入通项公式得,解此方程要构造新的方程,即令, ,故,只有 ,则仅存在连续的三项合题意.
试题解析:(1)设等差数列的公差为,等比数列的公比为,
则,
,
又,,解得,
∴对于,有,
故.
(2).
(3)在数列中,仅存在连续的三项,按原来的顺序成等差数列,此时正整数的值为1,下面说明理由.
若,则由,得,
化简得,此式左边为偶数,右边为奇数,不可能成立.
若,则由,得,
化简得.
令,则.
因此,,故只有,此时.
综上,在数列中,仅存在连续的三项,按原来的顺序成等差数列,此时正整数的值为1
考点:1.等差数列的通项公式和前n项和;2.等比数列的通项公式和前n项和;3.利用数列的性质解方程.
练习册系列答案
相关题目