题目内容
【题目】已知椭圆的对称中心为原点,焦点在轴上,焦距为,点在该椭圆上.
(1)求椭圆的方程;
(2)直线与椭圆交于两点,点位于第一象限,是椭圆上位于直线两侧的动点.当点运动时,满足,问直线的斜率是否为定值,请说明理由.
【答案】(1);(2)
【解析】
(1)由题可得, 所以 ,则椭圆的方程为
(2)将代入椭圆方程可得,解得 ,则 ,由题可知直线与直线的斜率互为相反数,写出直线的方程与椭圆方程联立整理可得。
(1)因为椭圆的对称中心为原点,焦点在轴上,
所以设椭圆方程为
因为焦距为,
所以 ,焦点坐标 ,
又因为点在该椭圆上,代入椭圆方程得
所以 ,即
解得
所以
则椭圆的方程为.
(2)将代入椭圆方程可得,解得
则
当点运动时,满足,则直线与直线的斜率互为相反数,
不妨设,则,
所以直线的方程为,
联立 ,解得
因为是该方程的两根,
所以,即,
同理直线的方程为且
所以
所以 ,
即直线的斜率为定值。
【题目】垃圾分类是对垃圾进行有效处置的一种科学管理方法,为了了解居民对垃圾分类的知晓率和参与率,引导居民积极行动,科学地进行垃圾分类,某小区随机抽取年龄在区间上的50人进行调研,统计出年龄频数分布及了解垃圾分类的人数如下表:
年龄 | ||||||
频数 | 5 | 10 | 10 | 15 | 5 | 5 |
了解 | 4 | 5 | 8 | 12 | 2 | 1 |
(1)填写下面2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为以65岁为分界点居民对了解垃圾分类的有关知识有差异;
年龄低于65岁的人数 | 年龄不低于65岁的人数 | 合计 | |
了解 | |||
不了解 | |||
合计 |
(2)若对年龄在,的被调研人中各随机选取2人进行深入调研,记选中的4人中不了解垃圾分类的人数为X,求随机变量X的分布列和数学期望
参考公式和数据
,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】2019年双十一落下帷幕,天猫交易额定格在268(单位:十亿元)人民币(下同),再创新高,比去年218(十亿元)多了50(十亿元).这些数字的背后,除了是消费者买买买的表现,更是购物车里中国新消费的奇迹,为了研究历年销售额的变化趋势,一机构统计了2010年到2019年天猫双十一的销售额数据y(单位:十亿元),绘制如表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
编号x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
销售额y | 0.9 | 8.7 | 22.4 | 41 | 65 | 94 | 132.5 | 172.5 | 218 | 268 |
根据以上数据绘制散点图,如图所示
(1)根据散点图判断,与哪一个适宜作为销售额关于的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及如表中的数据,建立关于的回归方程,并预测2020年天猫双十一销售额;(注:数据保留小数点后一位)
(3)把销售超过100(十亿元)的年份叫“畅销年”,把销售额超过200(十亿元)的年份叫“狂欢年”,从2010年到2019年这十年的“畅销年”中任取2个,求至少取到一个“狂欢年”的概率.
参考数据:
参考公式:
对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别,.