题目内容
【题目】已知数列是递增数列,且对,都有,则实数的取值范围是
A. B. C. D.
【答案】D
【解析】
由{an}是递增数列,得到an+1>an,再由“an=n2+λn恒成立”转化为“λ>﹣2n﹣1对于n∈N*恒成立”求解.
∵{an}是递增数列,
∴an+1>an,
∵an=n2+λn恒成立
即(n+1)2+λ(n+1)>n2+λn,
∴λ>﹣2n﹣1对于n∈N*恒成立.
而﹣2n﹣1在n=1时取得最大值﹣3,
∴λ>﹣3,
故选:D.
【点睛】
本题主要考查由数列的单调性来构造不等式,解决恒成立问题.研究数列单调性的方法有:比较相邻两项间的关系,将an+1和an做差与0比较,即可得到数列的单调性;研究数列通项即数列表达式的单调性.
【题型】单选题
【结束】
13
【题目】已知数列{an}满足a1=1,且an=an-1+2n1 (n≥2 ),则a20=________.
【答案】400
【解析】
由an﹣an﹣1=2n﹣1(n≥2,n∈N*),且a1=1.知an=(an﹣an﹣1)+(an﹣1﹣an﹣1)+…+(a2﹣a1)+a1,可得到a20.
由an﹣an﹣1=2n﹣1(n≥2,n∈N*),且a1=1.
知an=(an﹣an﹣1)+(an﹣1﹣an﹣1)+…+(a2﹣a1)+a1
=(2n﹣1)+(2n﹣3)+…+3+1=.
故a20=400.
故答案为:400.
练习册系列答案
相关题目