题目内容

【题目】已知数列是递增数列,且对,都有,则实数的取值范围是

A. B. C. D.

【答案】D

【解析】

{an}是递增数列,得到an+1>an,再由“an=n2+λn恒成立转化为“λ>﹣2n﹣1对于nN*恒成立求解.

∵{an}是递增数列,

∴an+1>an

∵an=n2+λn恒成立

即(n+1)2+λ(n+1)>n2+λn,

∴λ>﹣2n﹣1对于nN*恒成立.

而﹣2n﹣1n=1时取得最大值﹣3,

∴λ>﹣3,

故选:D.

【点睛】

本题主要考查由数列的单调性来构造不等式,解决恒成立问题.研究数列单调性的方法有:比较相邻两项间的关系,将an+1an做差与0比较,即可得到数列的单调性;研究数列通项即数列表达式的单调性.

型】单选题
束】
13

【题目】已知数列{an}满足a1=1,且anan1+2n1 (n≥2 ),则a20________

【答案】400

【解析】

an﹣an﹣1=2n﹣1(n≥2,nN*),且a1=1.知an=(an﹣an﹣1)+(an﹣1﹣an﹣1)+…+(a2﹣a1)+a1,可得到a20.

an﹣an﹣1=2n﹣1(n≥2,nN*),且a1=1.

an=(an﹣an﹣1)+(an﹣1﹣an﹣1)+…+(a2﹣a1)+a1

=(2n﹣1)+(2n﹣3)+…+3+1=

a20=400.

故答案为:400.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网