题目内容
【题目】在如图所示的锐角三角形空地中, 欲建一个面积不小于300m2的内接矩形花园(阴影部分), 则其边长x(单位m)的取值范围是 ( )
(A) [15,20](B) [12,25] (C) [10,30](D) [20,30]
【答案】C
【解析】如图△ADE∽△ABC,设矩形的另一边长为y,则,所以,又,所以,即,解得.
【考点定位】本题考查平面几何知识和一元二次不等式的解法,对考生的阅读理解能力、分析问题和解决问题的能力以及探究创新能力都有一定的要求.属于难题.
【题型】单选题
【结束】
10
【题目】设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=( )
A. 5 B. 4 C. 3 D. 6
【答案】A
【解析】
根据数列前n项和的定义得到的值,再由数列的前n项和的公式得到,进而求得首项,由=2,解得m值.
Sm-1=-2,Sm=0,故得到 Sm=0,Sm+1=3,则,
根据等差数列的前n项和公式得到Sm=,得到首项为-2,故=2,解得m=5.
故答案为:A.
【题目】已知函数f(x)的定义域为[﹣1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示,下列关于函数f(x)的命题:
x | ﹣1 | 0 | 4 | 5 |
f(x) | 1 | 2 | 2 | 1 |
(1)函数y=f(x)是周期函数;
(2)函数f(x)在(0,2)上是减函数;
(3)如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;
(4)当1<a<2时,函数y=f(x)﹣a有4个零点.
其中真命题的个数有( )
A.1个
B.2个
C.3个
D.4个
【题目】某校100名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间如下:
组号 | 第一组 | 第二组 | 第三组 | 第四组 | 第五组 |
分组 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;
(3)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率.