题目内容
【题目】已知函数f(x)=(x﹣k)ex . (Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在区间[0,1]上的最小值.
【答案】解:(Ⅰ)f′(x)=(x﹣k+1)ex,
令f′(x)=0,得x=k﹣1,
f′(x)f(x)随x的变化情况如下:
x | (﹣∞,k﹣1) | k﹣1 | (k﹣1,+∞) |
f′(x) | ﹣ | 0 | + |
f(x) | ↓ | ﹣ek﹣1 | ↑ |
∴f(x)的单调递减区间是(﹣∞,k﹣1),f(x)的单调递增区间(k﹣1,+∞);
(Ⅱ)当k﹣1≤0,即k≤1时,函数f(x)在区间[0,1]上单调递增,
∴f(x)在区间[0,1]上的最小值为f(0)=﹣k;
当0<k﹣1<1,即1<k<2时,由(I)知,f(x)在区间[0,k﹣1]上单调递减,f(x)在区间(k﹣1,1]上单调递增,
∴f(x)在区间[0,1]上的最小值为f(k﹣1)=﹣ek﹣1;
当k﹣1≥1,即k≥2时,函数f(x)在区间[0,1]上单调递减,
∴f(x)在区间[0,1]上的最小值为f(1)=(1﹣k)e;
综上所述f(x)min=
【解析】(I)求导,令导数等于零,解方程,跟据f′(x)f(x)随x的变化情况即可求出函数的单调区间;(Ⅱ)根据(I),对k﹣1是否在区间[0,1]内进行讨论,从而求得f(x)在区间[0,1]上的最小值.
【考点精析】根据题目的已知条件,利用利用导数研究函数的单调性和函数的最大(小)值与导数的相关知识可以得到问题的答案,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果
,那么函数
在这个区间单调递增;(2)如果
,那么函数
在这个区间单调递减;求函数
在
上的最大值与最小值的步骤:(1)求函数
在
内的极值;(2)将函数
的各极值与端点处的函数值
,
比较,其中最大的是一个最大值,最小的是最小值.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】随机调查某社区80个人,以研究这一社区居民的休闲方式是否与性别有关,得到下面的数据表:
休闲方式 | 看电视 | 运动 | 合计 |
男性 | 20 | 10 | 30 |
女性 | 45 | 5 | 50 |
合计 | 65 | 15 | 80 |
(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人是以运动为休闲方式的人数为随机变量X,求X的分布列和期望;
(2)根据以上数据,能否有99%的把握认为休闲方式与性别有关系?
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2= ),其中n=a+b+c+d)