题目内容
数列{an}的通项公式为an=(-1)n-1(4n-3),则S100等于______.
由题意可得:数列{an}的通项公式为an=(-1)n-1•(4n-3),
所以a1=1,a2=-5,a3=9,a4=-13,…a99=393,a100=-397,
所以S100=(a1+a2)+(a3+a4)+…+(a99+a100),
所以S100=-(4+4+…+4)=-200.
故答案为:-200.
所以a1=1,a2=-5,a3=9,a4=-13,…a99=393,a100=-397,
所以S100=(a1+a2)+(a3+a4)+…+(a99+a100),
所以S100=-(4+4+…+4)=-200.
故答案为:-200.
练习册系列答案
相关题目