题目内容
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数, ).
(1)求曲线的直角坐标方程和直线的普通方程;
(2)若曲线上的动点到直线的最大距离为,求的值.
【答案】(1),直线的普通方程为: (2)
【解析】试题分析:(1)因为, ,故可得曲线,直线的普通方程为: ;(2)由点到直线的距离公式可得: , .
试题解析:
(1)由得,
因为, ,故可得曲线,
由消去参数可得直线的普通方程为: ;
(2)由(1)可得曲线的参数方程为: (为参数),
由点到直线的距离公式可得:
据条件可知,由于,分如下情况:
①时,由得;
②时,由得;
综上, .
【题目】某农科站技术员为了解某品种树苗的生长情况,在该批树苗中随机抽取一个容量为100的样本,测量树苗高度(单位:).经统计,高度在区间内,将其按,,,,,分成6组,制成如图所示的频率分布直方图,其中高度不低于的树苗为优质树苗.
附:
,其中
(1)求频率分布直方图中的值;
(2)已知所抽取的这100棵树苗来自于甲、乙两个地区,部分数据如下列联表所示,将列联表补充完整,并根据列联表判断是否有%的把握认为优质树苗与地区有关?
甲地区 | 乙地区 | 合计 | |
优质树苗 | 5 | ||
非优质树苗 | 25 | ||
合计 |
【题目】汽车是碳排放量比较大的行业之一,欧盟规定,从2015年开始,将对排放量超过130g/km的型新车进行惩罚(视为排放量超标),某检测单位对甲、乙两类型品牌抽取5辆进行排放量检测,记录如下(单位:g/km):
甲 | 80 | 110 | 120 | 140 | 150 |
乙 | 100 | 120 | x | y | 160 |
经测算发现,乙品牌车排放量的平均值为.
(Ⅰ)从被检测的5辆甲类品牌中任取2辆,则至少有一辆排放量超标的概率是多少?
(Ⅱ)若乙类品牌的车比甲类品牌的的排放量的稳定性要好,求x的范围.