题目内容
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).
(1)求曲线的直角坐标方程和直线的的普通方程;
(2)设点,若直线与曲线交于两点,且,求实数的值.
【答案】(1),;(2)或或
【解析】试题分析:第一问利用极坐标与平面直角坐标之间的转换关系,将曲线的极坐标方程转化为平面直角坐标方程,消参将直线的参数方程转化为普通方程,第二问根据直线的参数方程当中参数的几何意义,将直线的参数方程与曲线的平面直角坐标方程联立,消元化为关于的一元二次方程,结合根与系数之间的关系,得到关于的等量关系式,求得结果,一定要验证两个交点的存在性.
试题解析:(1)曲线C的极坐标方程是,化为,
可得直角坐标方程:.
直线L的参数方程是(t为参数),
消去参数t可得.
把(t为参数),代入方程:,
化为,
由,解得-1<m<3..
,,
解得.又满足.∴实数.
练习册系列答案
相关题目