题目内容
【题目】某少数民族的刺绣有着悠久的历史,图中(1)、(2)、(3)、(4)为她们刺锈最简单的四个图案,这些图案都是由小正方向构成,小正方形数越多刺锈越漂亮,向按同样的规律刺锈(小正方形的摆放规律相同),设第个图形包含个小正方形
(1)求的值
(2)求出的表达式
(3)求证:当时,
【答案】(1)61(2)f(n)=2n2﹣2n+1;(3)见解析
【解析】试题分析:(1)根据列举法找规律,得到的值;(2)同样根据列举法找规律 ,根据累加法得到的表达式;(3)根据(2)的结果,代入可得,利用累加法求和,再根据数列的单调性证明不等式.
试题解析:解:(1)f(1)=1,f(2)=1+4=5,
f(3)=1+4+8=13,f(4)=1+4+8+12=25,
f(5)=1+4+8+12+16=41.f(6)=1+4+8+12+16+20=61;
(2)∵f(2)﹣f(1)=4=4×1,
f(3)﹣f(2)=8=4×2,
f(4)﹣f(3)=12=4×3,
f(5)﹣f(4)=16=4×4,
由上式规律得出f(n+1)﹣f(n)=4n.
∴f(n)﹣f(n﹣1)=4(n﹣1),
f(n﹣1)﹣f(n﹣2)=4(n﹣2),
f(n﹣2)﹣f(n﹣3)=4(n﹣3),
…
f(2)﹣f(1)=4×1,
∴f(n)﹣f(1)=4[(n﹣1)+(n﹣2)+…+2+1]
=2(n﹣1)n,
∴f(n)=2n2﹣2n+1;
(2)证明:当n≥2时,==(﹣),
∴+++…+=1+(1﹣+﹣+…+﹣)
=1+(1﹣)=﹣.
由于g(n)=﹣为递增数列,
即有g(n)≥g(1)=1,
且g(n)<,
则+++…+<成立.
练习册系列答案
相关题目