题目内容
已知函数
(其中
为常数).
(Ⅰ)当
时,求函数的单调区间;
(Ⅱ) 当
时,设函数
的3个极值点为
,且
.
证明:
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643804846.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643820283.png)
(Ⅰ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643835370.png)
(Ⅱ) 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643851438.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643866447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643882493.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643898503.png)
证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643913696.png)
(Ⅰ)单调减区间为
,
;增区间为
.
(Ⅱ)利用导数研究得到
,所以
,
当
时,
,
,
∴ 函数
的递增区间有
和
,递减区间有
,
,
,
此时,函数
有3个极值点,且
;
当
时,
通过构造函数
,证得当
时,
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643929445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643960555.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643976638.png)
(Ⅱ)利用导数研究得到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240106439911217.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644007556.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643851438.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644054753.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644069667.png)
∴ 函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643866447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644100506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644116585.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644132493.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644147448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644178503.png)
此时,函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643866447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644210438.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643851438.png)
通过构造函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240106442561046.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643851438.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644288695.png)
试题分析:(Ⅰ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240106443031013.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644334534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644350415.png)
![]() | ![]() | ![]() | ![]() | ![]() |
![]() | - | - | 0 | + |
![]() | 减 | 减 | 极小值 | 增 |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643929445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643960555.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643976638.png)
(Ⅱ)由题,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240106445681314.png)
对于函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644584911.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644600826.png)
∴函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644615484.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644646579.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644662659.png)
∵函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643866447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643898503.png)
从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240106439911217.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644007556.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643851438.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644054753.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644069667.png)
∴ 函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643866447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644100506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644116585.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644132493.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644147448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644178503.png)
此时,函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643866447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644210438.png)
∴当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643851438.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010645068412.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644584911.png)
即有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240106451141330.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643820283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010645146759.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010645161685.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010645177697.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010645192469.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010645208624.png)
∴函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010645161685.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010645239555.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010645255650.png)
要证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643913696.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010645286256.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010645302678.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010645286256.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010645348927.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010645364695.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010645364195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240106453951398.png)
构造函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240106442561046.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010645426775.png)
只需要证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010645442662.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240106454581147.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240106454731458.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010645489560.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010645504536.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240106455361134.png)
∴当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010643851438.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010644288695.png)
点评:典型题,本题属于导数应用中的基本问题,像涉及恒成立问题,往往通过研究函数的最值达到解题目的。证明不等式问题,往往通过构造新函数,研究其单调性及最值,而达到目的。本题(II)难度较大。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目