题目内容
13.在数列{an}和{bn}中,an=2n+3,bn=$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$,则数列{bn}的前n项和Sn=$\frac{1}{2}$($\sqrt{2n+5}$-$\sqrt{5}$).分析 通过an=2n+3、分母有理化可知bn=$\frac{1}{2}$($\sqrt{2n+5}$-$\sqrt{2n+3}$),并项相加即得结论.
解答 解:∵an=2n+3,
∴bn=$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$
=$\frac{1}{\sqrt{2n+3}+\sqrt{2n+5}}$
=$\frac{(\sqrt{2n+5}-\sqrt{2n+3})}{(\sqrt{2n+5}+\sqrt{2n+3})•(\sqrt{2n+5}-\sqrt{2n+3})}$
=$\frac{1}{2}$($\sqrt{2n+5}$-$\sqrt{2n+3}$),
∴Sn=$\frac{1}{2}$($\sqrt{7}$-$\sqrt{5}$+$\sqrt{9}-\sqrt{7}$+…+$\sqrt{2n+5}$-$\sqrt{2n+3}$)
=$\frac{1}{2}$($\sqrt{2n+5}$-$\sqrt{5}$),
故答案为:$\frac{1}{2}$($\sqrt{2n+5}$-$\sqrt{5}$).
点评 本题考查数列的求和,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
4.若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2-c2=4,且cosC=$\frac{1}{3}$,则△ABC周长的最小值为( )
A. | $\sqrt{6}$+$\sqrt{2}$ | B. | $\sqrt{6}$+$\sqrt{3}$ | C. | $\sqrt{5}$+$\sqrt{3}$ | D. | 2$\sqrt{3}$ |