题目内容

7.如图在三棱锥S-ABC中,SC⊥面ABC,AC⊥BC,且SC=AC=BC,求二面角S-AB-C的余弦值.

分析 取AB中点O,连结SO,CO,由已知得∠SOC是二面角S-AB-C的平面角,由此能求出二面角S-AB-C的余弦值.

解答 解:设SC=AC=BC=a,
取AB中点O,连结SO,CO,
∵在三棱锥S-ABC中,SC⊥面ABC,AC⊥BC,且SC=AC=BC,
∴SA=SB=AB=$\sqrt{2}a$,
∴SO⊥AB,CO⊥AB,
∴∠SOC是二面角S-AB-C的平面角,
∵CO=AO=$\frac{1}{2}AB$=$\frac{\sqrt{2}}{2}a$,∴SO=$\sqrt{(\frac{\sqrt{2}}{2}a)^{2}+{a}^{2}}$=$\frac{\sqrt{6}}{2}a$,
∴cos∠SOC=$\frac{CO}{SO}$=$\frac{\frac{\sqrt{2}}{2}a}{\frac{\sqrt{6}}{2}a}$=$\frac{\sqrt{3}}{3}$.
即二面角S-AB-C的余弦值为$\frac{\sqrt{3}}{3}$.

点评 本题考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网