题目内容

8.已知实数x,y满足约束条件$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{0≤y≤k}\end{array}\right.$,z=x+y,若z的最大值为12,则k=6.

分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=x+y得y=-x+z,
平移直线y=-x+z,
由图象可知当直线y=-x+z经过点A时,直线y=-x+z的截距最大,此时z最大.
此时z=x+y=12
由$\left\{\begin{array}{l}{x+y=12}\\{x-y=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=6}\\{y=6}\end{array}\right.$,即A(6,6),
同时A也在y=k上,
∴k=6.
故答案为:6

点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用平移确定目标函数取得最优解的条件是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网