题目内容
【题目】2016年某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计60吨厨余垃圾,假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱和“其他垃圾”箱的投放量分别为x,y,z,其中x>0,x+y+z=60,则数据x,y,z的标准差的最大值为 . (注:方差 ,其中 为x1 , x2 , …,xn的平均数)
【答案】20
【解析】解:由题意可知:∵x+y+z=60, ∴x,y,z的平均数为20
∴s2= [(x﹣20)2+(y﹣20)2+(z﹣20)2]= (x2+y2+z2﹣1200),
∵(x+y+z)2=x2+y2+z2+2xy+2yz+2xz≥x2+y2+z2 ,
因此有当x=60,y=0,z=0时,
方差最大值s2=800,
此时数据x,y,z的标准差的最大值为20 ,
所以答案是:20
【考点精析】认真审题,首先需要了解函数的最值及其几何意义(利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值).
【题目】某商场每天以每件100元的价格购入A商品若干件,并以每件200元的价格出售,若所购进的A商品前8小时没有售完,则商场对没卖出的A商品以每件60元的低价当天处理完毕(假定A商品当天能够处理完).该商场统计了100天A商品在每天的前8小时的销售量,制成如表格.
前8小时的销售量t(单位:件) | 5 | 6 | 7 |
频 数 | 40 | 35 | 25 |
(1)若某天该商场共购入7件A商品,在前8个小时售出5件. 若这些产品被7名不同的顾客购买,现从这7名顾客中随机选3人进行回访,记X表示这3人中以每件200元的价格购买的人数,求X的分布列;
(2)将频率视为概率,要使商场每天购进A商品时所获得的平均利润最大,则每天应购进几件A商品,并说明理由.