题目内容
某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:
| 喜欢 | 不喜欢[来源:学科网ZXXK] | 合计 |
大于40岁 | 20 | 5 | 25 |
20岁至40岁 | 10 | 20 | 30 |
合计 | 30 | 25 | 55 |
(Ⅱ)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.
下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)有的把握认为喜欢“人文景观”景点与年龄有关;(2).
解析试题分析:本题主要考查实际问题中的独立性检验、随机事件的概率、分层抽样等数学知识,考查计算能力,综合分析问题解决问题的能力.第一问,根据已知的表格读出的值,利用的公式计算,再与作比较,得到概率值判断相关性;第二问,先用分层抽样得出抽取的6人中“大于40岁”和“20岁至40岁”的分别多少人,用字母代表,在这6人中选2人,所有情况可以用字母一一列出共15种,其中恰有1名“大于40岁”和1名“20岁至40岁”之间的市民的情况有8种,所以概率为.
试题解析:(1)由公式
所以有的把握认为喜欢“人文景观”景点与年龄有关 5分
(2)设所抽样本中有个“大于40岁”市民,则,得人
所以样本中有4个“大于40岁”的市民,2个“20岁至40岁”的市民,分别记作,从中任选2人的基本事件有
共15个 9分
其中恰有1名“大于40岁”和1名“20岁至40岁”之间的市民的事件有共8个
所以恰有1名“大于40岁”和1名“20岁至40岁”之间的市民的概率为 12分
考点:1.独立性检验;2.随机事件的概率;3.分层抽样.
有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次.根据年龄将大众评委分为五组,各组的人数如下:
组别 | A | B | C | D | E |
人数 | 50 | 100 | 150 | 150 | 50 |
组别 | A | B | C | D | E |
人数 | 50 | 100 | 150 | 150 | 50 |
抽取人数 | | 6 | | | |
为了调查某大学学生在某天上网的时间,随机对100名男生和100名女生进行了不记名的问卷调查.得到了如下的统计结果:
表1:男生上网时间与频数分布表
上网时间(分钟) | [30,40) | [40,50) | [50,60) | [60,70) | [70,80] |
人数 | 5 | 25 | 30 | 25 | 15 |
上网时间(分钟) | [30,40) | [40,50) | [50,60) | [60,70) | [70,80] |
人数 | 10 | 20 | 40 | 20 | 10 |
(2)完成下面的2×2列联表,并回答能否有90%的把握认为“大学生上网时间与性别有关”?
| 上网时间少于60分钟 | 上网时间不少于60分钟 | 合计 |
男生 | | | |
女生 | | | |
合计 | | | |
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
据《中国新闻网》10月21日报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查,就是否“取消英语听力”的问题,调查统计的结果如下表:
| 应该取消 | 应该保留 | 无所谓 | ||
在校学生 | 2100人 | 120人 | y人 | ||
社会人士 | 600人 | x人 | z人 |
(Ⅰ)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(Ⅱ)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.
城市公交车的数量太多容易造成资源的浪费,太少又难以满足乘客需求,为此,某市公交公司在某站台的名候车乘客中随机抽取人,将他们的候车时间作为样本分成组,如下表所示(单位:min):
组别 | 候车时间 | 人数 |
一 | | |
二 | ||
三 | ||
四 | ||
五 |
(2)估计这名乘客中候车时间少于分钟的人数;
(3)若从上表第三、四组的人中选人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.
用分层抽样方法从高中三个年级的相关人员中抽取若干人组成研究小组,有关数据见下表:(单位:人)
年级 | 相关人数 | 抽取人数 |
高一 | 99 | |
高二 | 27 | |
高三 | 18 | 2 |
(Ⅱ)若从高二、高三年级抽取的人中选人,求这二人都来自高二年级的概率.