题目内容
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,过点的直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为,记直线与曲线分别交于两点.
(1)求曲线和的直角坐标方程;
(2)证明:成等比数列.
【答案】(1), .(2)见解析.
【解析】
(1)曲线C的极坐标方程左右两边同乘 ,再利用 可求其直角坐标方程;消参可求直线的普通方程;
(2)把直线的参数方程和曲线C的直角坐标方程联立,利用韦达定理分别表示 ,利用等比中项法即可证明。
(1)由,得 ,
所以曲线的直角坐标方程为,
由 ,消去参数,得直线的普通方程为.
(2)证明:将直线的参数方程代入中,得.
设两点对应的参数分别为,则有,,
所以.
因为,
所以,,成等比数列.
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了200人进行抽样分析,得到如表(单位:人):
经常使用 | 偶尔或不用 | 合计 | |
30岁及以下 | 70 | 30 | 100 |
30岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?
(Ⅱ)①现从所抽取的30岁以上的网民中,按“经常使用”与“偶尔或不用”这两种类型进行分层抽样抽取10人,然后,再从这10人中随机选出3人赠送优惠券,求选出的3人中至少有2人经常使用共享单车的概率.
②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用共享单车的人数为,求的数学期望和方差.
参考公式:,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |