题目内容
【题目】已知六面体如图所示,平面,,,,,,是棱上的点,且满足.
(1)求证:直线平面;
(2)求二面角的正弦值.
【答案】(1)证明见解析(2)
【解析】
(1)连接,设,连接.通过证明,证得直线平面.
(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的正弦值.
(1)连接,设,连接,
因为,所以,所以,
在中,因为,
所以,且平面,
故平面.
(2)因为,,,,,所以,
因为,平面,所以平面,
所以,,
取所在直线为轴,取所在直线为轴,取所在直线为轴,建立如图所示的空间直角坐标系,
由已知可得,,,,
所以,因为,
所以,
所以点的坐标为,
所以,,设为平面的法向量,
则,令,解得,,
所以,即为平面的一个法向量.
,
同理可求得平面的一个法向量为
所以
所以二面角的正弦值为
练习册系列答案
相关题目