题目内容

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F(-1,0),离心率为
2
2
,过点F的直线l与椭圆C交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点F不与坐标轴垂直的直线交椭圆C于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.
(Ⅰ)由题意可知:c=1,a2=b2-c2,e=
c
a
=
2
2
…(2分)
解得:a=
2
,b=1(3分)
故椭圆的方程为:
x2
2
+y2
=1(4分)
(II)设直线AB的方程为y=k(x+1)(k≠0),(5分)
联立,得
y=k(x+1)
x2
2
+y2=1

整理得(1+2k2)x2+4k2x+2k2-2=0(7分)
∵直线AB过椭圆的左焦点F∴方程有两个不等实根.(8分)
记A(x1,y1),B(x2,y2),AB的中点N(x0,y0
则x1+x2=
-4k2
1+2k2
(9分)
x0=
x1+x2
2
y0=
y1+y2
2
(10分)
垂直平分线NG的方程为y-y0=-
1
k
(x-x0)
,(11分)
令y=0,得xG=x0+ky0=-
2k2
2k2+1
+
k2
2k2+1
=-
k2
2k2+1

=-
1
2
+
1
4k2+2
.(12分)
∵k≠0,∴-
1
2
xG
<0(13分)
∴点G横坐标的取值范围为(-
1
2
,0).(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网