ÌâÄ¿ÄÚÈÝ
£¨2008•º£ÖéÇøһģ£©ÒÑÖªÅ×ÎïÏßDµÄ¶¥µãÊÇÍÖÔ²
+
=1µÄÖÐÐÄ£¬½¹µãÓë¸ÃÍÖÔ²µÄÓÒ½¹µãÖغϣ®
£¨1£©ÇóÅ×ÎïÏßDµÄ·½³Ì£»
£¨2£©ÒÑÖª¶¯Ö±Ïßl¹ýµãP£¨4£¬0£©£¬½»Å×ÎïÏßDÓÚA¡¢BÁ½µã£¬×ø±êÔµãOΪPQÖе㣬ÇóÖ¤£º¡ÏAQP=¡ÏBQP£»
£¨3£©ÊÇ·ñ´æÔÚ´¹Ö±ÓÚxÖáµÄÖ±Ïßm±»ÒÔAPΪֱ¾¶µÄÔ²Ëù½ØµÃµÄÏÒ³¤ºãΪ¶¨Öµ£¿Èç¹û´æÔÚ£¬Çó³ömµÄ·½³Ì£»Èç¹û²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
x2 |
4 |
y2 |
3 |
£¨1£©ÇóÅ×ÎïÏßDµÄ·½³Ì£»
£¨2£©ÒÑÖª¶¯Ö±Ïßl¹ýµãP£¨4£¬0£©£¬½»Å×ÎïÏßDÓÚA¡¢BÁ½µã£¬×ø±êÔµãOΪPQÖе㣬ÇóÖ¤£º¡ÏAQP=¡ÏBQP£»
£¨3£©ÊÇ·ñ´æÔÚ´¹Ö±ÓÚxÖáµÄÖ±Ïßm±»ÒÔAPΪֱ¾¶µÄÔ²Ëù½ØµÃµÄÏÒ³¤ºãΪ¶¨Öµ£¿Èç¹û´æÔÚ£¬Çó³ömµÄ·½³Ì£»Èç¹û²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓÉÌâÒ⣬ÉèÅ×ÎïÏß·½³ÌΪy2=2px£¨p£¾0£©£®ÓÉa2-b2=4-3=1£¬µÃc=1£®ÓÉ´ËÄÜÇó³öÅ×ÎïÏßDµÄ·½³Ì£®
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉÓÚOΪPQÖ®Öе㣬¹Êµ±l¡ÍxÖáʱÓÉÅ×ÎïÏߵĶԳÆÐÔÖª¡ÏAQP=¡ÏBQP£¬µ±l²»´¹Ö±xÖáʱ£¬Éèl£ºy=k£¨x-4£©£¬ÓÉ
£¬µÃk2x2-4£¨2k2+1£©x+16k2=0£¬ÓÉ´ËÄܹ»Ö¤Ã÷¡ÏAQP=¡ÏBQp£®
£¨3£©Éè´æÔÚÖ±Ïßm+x=aÂú×ãÌâÒ⣬ÔòÔ²ÐÄM(
£¬
)£¬¹ýM×÷Ö±Ïßx=aµÄ´¹Ïߣ¬´¹×ãΪE£¬¹Ê|EG|2=|MG|2-|ME|2£¬ÓÉ´ËÄܹ»µ¼³ö´æÔÚÖ±Ïßm£ºx=3Âú×ãÌâÒ⣮
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉÓÚOΪPQÖ®Öе㣬¹Êµ±l¡ÍxÖáʱÓÉÅ×ÎïÏߵĶԳÆÐÔÖª¡ÏAQP=¡ÏBQP£¬µ±l²»´¹Ö±xÖáʱ£¬Éèl£ºy=k£¨x-4£©£¬ÓÉ
|
£¨3£©Éè´æÔÚÖ±Ïßm+x=aÂú×ãÌâÒ⣬ÔòÔ²ÐÄM(
x1+4 |
2 |
y1 |
2 |
½â´ð£º£¨±¾Ð¡ÌâÂú·Ö14·Ö£©
£¨1£©½â£ºÓÉÌâÒ⣬¿ÉÉèÅ×ÎïÏß·½³ÌΪy2=2px£¨p£¾0£©£®
ÓÉa2-b2=4-3=1£¬µÃc=1£®
¡àÅ×ÎïÏߵĽ¹µãΪ£¨1£¬0£©£¬¡àp=2£®
¡àÅ×ÎïÏßDµÄ·½³ÌΪy2=4x£®¡£¨4·Ö£©
£¨2£©Ö¤Ã÷£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉÓÚOΪPQÖ®Öе㣬¹Êµ±l¡ÍxÖáʱ£¬ÓÉÅ×ÎïÏߵĶԳÆÐÔÖª£¬Ò»¶¨ÓСÏAQP=¡ÏBQP£¬
µ±l²»´¹Ö±xÖáʱ£¬Éèl£ºy=k£¨x-4£©£¬
ÓÉ
£¬µÃk2x2-4£¨2k2+1£©x+16k2=0£¬
¡à
£¬
¡ßkAQ=
=
£¬
kBQ=
=
£¬
¡àkAQ+kBQ=
=
=0£¬
¡à¡ÏAQP=¡ÏBQP£®
×ÛÉÏÖ¤Öª£¬¡ÏAQP=¡ÏBQP
£¨3£©½â£ºÉè´æÔÚÖ±Ïßm+x=aÂú×ãÌâÒ⣬
ÔòÔ²ÐÄM(
£¬
)£¬
¹ýM×÷Ö±Ïßx=aµÄ´¹Ïߣ¬´¹×ãΪE£¬
¡à|EG|2=|MG|2-|ME|2£¬
¼´|EG|2=|MA|2-|ME|2
=
-(
-a)2
=
y12+
+a(x1+4)-a2
=x1-4x1+a(x1+4)-a2
=(a-3)x1+4a-a2£¬
µ±a=3ʱ£¬|EG|2=3£¬
´ËʱֱÏßm±»ÒÔAPΪֱ¾¶µÄÔ²½ØµÃµÄÏÒ³¤ºãΪ¶¨Öµ2
£®¡£¨13·Ö£©
Òò´Ë´æÔÚÖ±Ïßm£ºx=3Âú×ãÌâÒâ¡£¨14·Ö£©
£¨1£©½â£ºÓÉÌâÒ⣬¿ÉÉèÅ×ÎïÏß·½³ÌΪy2=2px£¨p£¾0£©£®
ÓÉa2-b2=4-3=1£¬µÃc=1£®
¡àÅ×ÎïÏߵĽ¹µãΪ£¨1£¬0£©£¬¡àp=2£®
¡àÅ×ÎïÏßDµÄ·½³ÌΪy2=4x£®¡£¨4·Ö£©
£¨2£©Ö¤Ã÷£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉÓÚOΪPQÖ®Öе㣬¹Êµ±l¡ÍxÖáʱ£¬ÓÉÅ×ÎïÏߵĶԳÆÐÔÖª£¬Ò»¶¨ÓСÏAQP=¡ÏBQP£¬
µ±l²»´¹Ö±xÖáʱ£¬Éèl£ºy=k£¨x-4£©£¬
ÓÉ
|
¡à
|
¡ßkAQ=
y1 |
x1+4 |
k(x1-4) |
x1+4 |
kBQ=
y2 |
x2+4 |
k(x2-4) |
x2+4 |
¡àkAQ+kBQ=
k(2x1x2-32) |
(x1+4)(x2+4) |
k(2•16-32) |
(x1+4)(x2+4) |
¡à¡ÏAQP=¡ÏBQP£®
×ÛÉÏÖ¤Öª£¬¡ÏAQP=¡ÏBQP
£¨3£©½â£ºÉè´æÔÚÖ±Ïßm+x=aÂú×ãÌâÒ⣬
ÔòÔ²ÐÄM(
x1+4 |
2 |
y1 |
2 |
¹ýM×÷Ö±Ïßx=aµÄ´¹Ïߣ¬´¹×ãΪE£¬
¡à|EG|2=|MG|2-|ME|2£¬
¼´|EG|2=|MA|2-|ME|2
=
(x1-4)2+y12 |
4 |
x1+4 |
2 |
=
1 |
4 |
(x1-4)2-(x1+4)2 |
4 |
=x1-4x1+a(x1+4)-a2
=(a-3)x1+4a-a2£¬
µ±a=3ʱ£¬|EG|2=3£¬
´ËʱֱÏßm±»ÒÔAPΪֱ¾¶µÄÔ²½ØµÃµÄÏÒ³¤ºãΪ¶¨Öµ2
3 |
Òò´Ë´æÔÚÖ±Ïßm£ºx=3Âú×ãÌâÒâ¡£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éÅ×ÎïÏß·½³ÌµÄÇ󷨣¬Ö±ÏߺÍÅ×ÎïÏßµÄλÖùØϵ£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²é»¯¹éÓëת»¯Ë¼Ï룮¶ÔÊýѧ˼άµÄÒªÇó±È½Ï¸ß£¬ÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£®×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬ÊǸ߿¼µÄÖص㣮½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿