题目内容
【题目】在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:
(1)设表示在这块地上种植1季此作物的利润,求的分布列;
(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.
【答案】(1)分布列见解析;(2).
【解析】
试题(1)设表示事件“作物产量为300”,表示事件“作物市场价格为6元”
由题设得4000,2000,800,结合概率公式计算出对应的概率,得出分布列;
(2)设表示事件“第季利润不少于2000元”,由题意知:相互独立,由(1)知
,3季利润均不少于2000元的概率为:
,3季中有2季利润不少于2000元的概率为:
,根据互斥事件概率的加法公式得:这3季中至少有2季的利润不少于2000元的概率为:
试题解析:(1)设表示事件“作物产量为300”,表示事件“作物市场价格为6元”
由题设知:,
因为利润=产量市场价格-成本
所以所以可能的取值为
,
,
,
,
,
所以的分布列为
4000 | 2000 | 800 | |
0.3 | 0.5 | 0.2 |
(2)设表示事件“第季利润不少于2000元”,
由题意知:相互独立,由(1)知
3季利润均不少于2000元的概率为:
3季中有2季利润不少于2000元的概率为:
所以,这3季中至少有2季的利润不少于2000元的概率为:
【题目】政府工作报告指出,2018年我国深入实施创新驱动发展战略,创新能力和效率进一步提升;2019年要提升科技支撑能力,健全以企业为主体的产学研一体化创新机制.某企业为了提升行业核心竞争力,逐渐加大了科技投入;该企业连续6年来的科技投入(百万元)与收益(百万元)的数据统计如下:
科技投入 | 2 | 4 | 6 | 8 | 10 | 12 |
收益 |
根据散点图的特点,甲认为样本点分布在指数曲线的周围,据此他对数据进行了一些初步处理,如下表:
其中,.
(1)(i)请根据表中数据,建立关于的回归方程(保留一位小数);
(ii)根据所建立的回归方程,若该企业想在下一年的收益达到2亿,则科技投入的费用至少要多少(其中)?
(2)乙认为样本点分布在二次曲线的周围,并计算得回归方程为,以及该回归模型的相关指数,试比较甲、乙两位员工所建立的模型,谁的拟合效果更好.
附:对于一组数据,,…,,其回归直线方程的斜率和截距的最小二乘估计分别为,,相关指数:.
【题目】计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(1)求未来4年中,至多1年的年入流量超过120的概率;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:
年入流量 | |||
发电量最多可运行台数 | 1 | 2 | 3 |
若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?