题目内容
数列{an}的前n项和为Sn,且满足a1=1,2Sn=(n+1)an,
(I)求an与an-1的关系式,并求{an}的通项公式;
(II)求和Wn=
+
+…+
.
(I)求an与an-1的关系式,并求{an}的通项公式;
(II)求和Wn=
1 | ||
|
1 | ||
|
1 | ||
|
分析:(I)由已知,
两式相减得2an=(n+1)an-nan-1,移向整理得出an=
an-1(n≥2),再利用累积法求通项公式.
(II)
=
=
=
(
-
),裂项后求和计算即可.
|
n |
n-1 |
(II)
1 | ||
|
1 |
(n+1)2-1 |
1 |
n(n+2) |
1 |
2 |
1 |
n |
1 |
n+2 |
解答:解:(I)由已知
两式相减得2an=(n+1)an-nan-1,移向整理得出an=
an-1(n≥2)
∴
=
•
•…•
=
•
•…•
=n,
∴an=n;且a1=1也适合,
所以an=n.
(II)
=
=
=
(
-
)
Wn=
+
+
+…+
=
[(1-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]
=
(1+
-
-
)=
-
.
|
n |
n-1 |
∴
an |
a1 |
an |
an-1 |
an-1 |
an-2 |
a2 |
a1 |
n |
n-1 |
n-1 |
n-2 |
2 |
1 |
∴an=n;且a1=1也适合,
所以an=n.
(II)
1 | ||
|
1 |
(n+1)2-1 |
1 |
n(n+2) |
1 |
2 |
1 |
n |
1 |
n+2 |
Wn=
1 |
1•3 |
1 |
2•4 |
1 |
3•5 |
1 |
n(n+2) |
1 |
2 |
1 |
3 |
1 |
2 |
1 |
4 |
1 |
3 |
1 |
5 |
1 |
n-1 |
1 |
n+1 |
1 |
n |
1 |
n+2 |
=
1 |
2 |
1 |
2 |
1 |
n+1 |
1 |
n+2 |
3 |
4 |
2n+3 |
2n(n+1) |
点评:本题考查数列累积法通项公式求解,裂项法求和.考查转化、变形构造,计算能力.
练习册系列答案
相关题目