题目内容

数列{an}的前n项和为Sn,且满足a1=1,2Sn=(n+1)an
(I)求an与an-1的关系式,并求{an}的通项公式;
(II)求和Wn=
1
a
2
2
-1
+
1
a
2
3
-1
+…+
1
a
2
n+1
-1
分析:(I)由已知,
2Sn=(n+1)an
2Sn-1=nan-1
两式相减得2an=(n+1)an-nan-1,移向整理得出an=
n
n-1
an-1
(n≥2),再利用累积法求通项公式.
(II)
1
a
2
n+1
-1
=
1
(n+1)2-1
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)
,裂项后求和计算即可.
解答:解:(I)由已知
2Sn=(n+1)an
2Sn-1=nan-1
两式相减得2an=(n+1)an-nan-1,移向整理得出an=
n
n-1
an-1
(n≥2)

an
a1
=
an
an-1
an-1
an-2
•…•
a2
a1
=
n
n-1
n-1
n-2
•…•
2
1
=n

∴an=n;且a1=1也适合,
所以an=n.
(II)
1
a
2
n+1
-1
=
1
(n+1)2-1
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

Wn=
1
1•3
+
1
2•4
+
1
3•5
+…+
1
n(n+2)
=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)
+(
1
3
-
1
5
)+…+(
1
n-1
-
1
n+1
)+( 
1
n
-
1
n+2
)]

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)=
3
4
-
2n+3
2n(n+1)
点评:本题考查数列累积法通项公式求解,裂项法求和.考查转化、变形构造,计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网