题目内容
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位: )和年利润(单位:千元)的影响,对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.
(1)根据散点图判断, 与哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说出理由);
(2)根据(1)的判断结果及表中数据,建立关于的回归方程;
(3)已知这种产品的年利润与的关系为,根据(2)的结果求:年宣传费为何值时,年利润最大?
附:对于一组数据, ,…,其回归直线的斜率和截距的最小二乘估计分别为, .
【答案】(1)选;(2);(3).
【解析】试题分析:(1)由于散点图是曲线的形式,故选择作为回归方程类型.(2)将数据代入回归直线方程的计算公式,可计算得回归直线方程为.(3)利用(2)的结论,写出年利润的表达式,利用二次函数求最值的方法可求得当时年利润取得最大值.
试题解析:
(1)选
(2)令, ,
由表可知: ,
所以关于的回归方程为: .
(3)由(2)可知:年利润
所以当,即时, 最大.
故年宣传费为千元时,年利润最大.
【题目】新一届中央领导集体非常重视勤俭节约,从“光盘行动”到“节约办春晚”.到饭店吃饭是吃光盘子或时打包带走,称为“光盘族”,否则称为“非光盘族”.政治课上政治老师选派几位同学组成研究性小组,从某社区[25,55]岁的人群中随机抽取人进行了一次调查,得到如下统计表:
组数 | 分组 | 频数 | 频率 | 光盘族占本组比例 |
第1组 | [25,30) | 50 | 0.05 | 30% |
第2组 | [30,35) | 100 | 0.10 | 30% |
第3组 | [35,40) | 150 | 0.15 | 40% |
第4组 | [40,45) | 200 | 0.20 | 50% |
第5组 | [45,50) | a | b | 65% |
第6组 | [50,55) | 200 | 0.20 | 60% |
(1)求的值,并估计本社区[25,55)岁的人群中“光盘族”所占比例;
(2)从年龄段在[35,45)的“光盘族”中采用分层抽样方法抽取8人参加节约粮食宣传活动,并从这8人中选取2人作为领队.求选取的2名领队分别来自[35,40)与[40,45)两个年龄段的概率.